Cathodes for Lithium Air Batteries

T. Fuller, K. Evanoff, V. George, E. Redmond, G. Yushin

Georgia Institute of Technology

J. Sassen, J. Allred, L. Nall

Electric Fuel Battery Corp.

2010.06.14

Lithium Air Batteries

- Approaches
 - Li⁺
 conducting
 barrier to
 protect
 lithium metal
 from water
 - Non-aqueous solvents
 - Ionic liquids

Room Temperature Ionic Liquids

- Non-flammable
- Near zero vapor pressure

- Low conductivity
- Low transference number of lithium
- Oxygen solubility

Alternative to Zinc Air

 Military communications BA-8180/U

Li-air requirements

- Higher energy density
- Long shelf life
- Reasonable power

Li-Air Battery Challenges

- Rate capability
 - Conductivity
 - Oxygen solubility
- Capacity
 - Solubility of lithium peroxide
- Shelf life
 - Absorption of water
 - Self-discharge

Cathode

- Reaction products insoluble
- Sufficient volume in cathode for precipitation
- Morphology of deposit is important

$$2Li + O_2 \rightarrow Li_2O_2$$

Comparison with Li-ion batteries

- Spirally wound on current collector, no gas access
- Air access is needec on cathode
 - Higher current density needed to achieve good energy and power density

Ohmic losses

- Ohmic polarization for current of 10 mA/cm²
- Electrode resistance more important than separator

Flooded Agglomerate Model

Permeability and runtime

- Permeability is of order
 10⁻¹⁰
- Completely flooded
 electrode
 not feasible

10

Cell Testing

- CR2032 coin cell
- Li foil negative
- Nonwoven separator

- EMITFSI
- Air electrode
 - Ni current collector
 - Hydrophobic phase
 - Hydrophillic catalyst phase

EMI⁺ TFSI⁻ Image

Testing

- Square wave cycling
 - 0-0.5 mA
- Ohmic polarization estimated from current interruption
- Concentration polarization evident

Testing

- Galvanostatic hold
- Relatively rapid decrease in performance

Testing

- Oxygen gain during square wave cycling
- Significant transport limitations

Testing Summary

- Conductivity of electrolyte too low
- Proper electrode structure not achieved
- Concentration polarizations appear to be significant

Ionic liquids

- Transport properties
 - Conductivity
 - Li-TFSI solubility
 - Water uptake
 - Oxygen permeability
- Development of new materials

Ionic liquids

Li TFSI solubility in EMI TFSI

	% Transmission		Transmission Ratio
Concentration	3150	3550	(IL @ 3150):(Salt @ 3550)
М	cm⁻¹	cm⁻¹	
0.00	90.6	99.2	0.91
0.25	90.6	97.8	0.93
0.50	91.8	98	0.92
0.75	92.2	96.4	0.94
1.00	92.4	94.4	0.96
1.50	93.2	92.8	0.98
2.00	94.2	92.8	0.98

Transmission Ratio (RT)

Ionic liquids

- Transport properties
 - Conductivity: EMITFSI highest, but still lower than desired
 - Li-TFSI solubility: does not appear to be an issue
 - Water uptake: all absorb water but impact on primary cell unclear
 - Oxygen permeability (in progress)

Future work

- Identify new room temperature ionic liquids with higher conductivities
- Develop electrode structure with better gas access
- Mathematical model of full cell
- Investigation of transport numbers for electrolytes

Acknowledgements

This work was supported by under contract W15P7T-09-CS327, US ARMY RDECOM